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Abstract
To successfully navigate its social environment, an agent must
construct and maintain representations of the other agents that
it encounters. Such representations are useful for many tasks,
but they are not without cost. As a result, agents must make
decisions regarding how much information they choose to store
about the other agents in their environment. Using choice
prediction as an example task, we illustrate the problem of
finding agent representations that optimally trade off between
downstream utility and information cost, before presenting the
results of two behavioural experiments designed to examine
this tradeoff in human social cognition. We find that people
are sensitive to the balance between representation cost and
downstream value, while still deviating from optimality.
Keywords: social cognition, resource rationality, decision-
making, information theory

Introduction
In order to produce adaptive behaviour, an agent must acquire
and maintain an internal representation of its environment
(Craik, 1943; Tolman, 1948; Wilson et al., 2014). For instance,
a foraging animal should have some representation of which
areas of its environment are most likely to provide food, as
well as which might contain sources of danger to avoid. But
this is true not only for the inanimate features of the world—
unless condemned to an entirely solitary existence, we can
expect that many environments encountered by a hypothetical
agent will contain other agents. Much as an agent should rep-
resent the rest of the environment, we expect that it ought also
to represent these other agents. Humans do this, of course—in
fact, it seems we automatically form mental representations of
the other people we encounter (Dennett, 1987; Malle, 2008;
Baker et al., 2017). We use these representations for a va-
riety of different purposes: understanding the strengths and
weaknesses of a colleague to effectively collaborate with them;
determining whether a stranger should be treated as friend or
foe; or predicting the plays of a chess opponent in order to
defeat them. In general, a detailed representation of the world
is more useful than a coarse one, in the sense of allowing
greater predictive power or insight. But real agents, whether
biological or artificial, inevitably have to contend with limits
on their cognitive or computational resources. We therefore
do not typically expect an agent to hold within their mind a
1:1 lossless model of the world; instead, they will employ a
representational system that involves some degree of approxi-
mation or compression. Indeed, the argument for compression
is perhaps especially clear in the specific case of representing
other agents. As soon as we allow for the fact that this process

goes both ways (i.e. as I represent agent X, agent X in turn
represents me) then we have to contend with some level of
recursion: my representation of agent X must contain within
it some representation of myself. For these representations to
involve no loss of information, my mind would have to contain
within it a number of perfect copies of itself, which cannot
be possible. This line of thinking motivates us to consider
two related questions. First, how much information should an
optimal agent represent about the other agents in its environ-
ment? And second, is the answer to this question reflected in
the choices that people actually do make in response to this
problem?

Over recent years, there has been a growing body of work
in cognitive science that seeks to understand human cognition
through the lens of resource rationality (Lieder & Griffiths,
2019; Bhui et al., 2021; Icard, 2023). As a framework, re-
source rationality extends the classic ideas of decision theory
(Neumann & Morgenstern, 1953; Jeffrey, 1965) and rational
analysis (Anderson, 1990) to account for the notion that agents
do not possess infinite capacity for acquiring, storing or pro-
cessing information. It can also be seen as building on the
concept of bounded rationality popularised by Simon (among
others), while being more explicit in its focus on the idea of
resourcefulness, i.e. of agents making the most effective use
of the cognitive resources available to them. Various formali-
sations of this idea are possible (Icard, 2023); we will adopt
a version of what Icard terms the ‘cost-theoretic approach’,
which considers a continuous tradeoff between the utility of a
given cognitive or behavioural strategy and the cost of carrying
it out. Note that this still leaves considerable flexibility via
the choice of how both sides of this tradeoff are defined. As
far as cost is concerned, our focus in this paper is specifically
on information cost; i.e. the cost of acquiring and storing the
representations (of other agents) that support a particular strat-
egy. This is distinct from the computational cost of converting
those representations into decisions or behaviour. While a
complete analysis should account for both, we leave this for
future work, and will focus in this paper on a task setting in
which the optimal decision strategy is extremely simple given
an appropriate representation.

Task
General objective
In its most general form, the cost-theoretic approach to re-
source rationality is concerned with maximising an objective
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function that looks like this:

R := S�lC (1)

where S is some measure success or performance on our task of
interest, C is some measure of the cost(s) we want to minimise,
and l is a tradeoff parameter that governs the relative weight
assigned to each quantity. For our purposes, we make R a
function of some chosen social representation c:

R(c) := S(c)�lC(c). (2)

For any choice of (S,C,l), the optimal representation is then
given by c⇤ = argmaxc R(c). This optimality criterion is sim-
ilar to the objectives used within work on capacity-limited
Bayesian decision-making and RL, such as Arumugam et al.
(2024). The key difference (beyond our explicit focus on so-
cial representations) is that we are interested not so much in
the cognitive cost of converting representations into behaviour,
but in the cost the representations themselves. In general, we
expect this be a combination of the cost involved in acquiring
a representation (i.e. inferring it from observation), and the
cost involved in storing it—for now we adopt a simplistic
definition of C(c) as the number of bits in c, assuming that
representations which require a greater number of bits to store
or transmit will impose a higher cognitive cost.

Pairwise choice prediction
As for S, we construct a minimal social cognition task where
one agent (Alice) tries to predict the choices made by a second
agent (Bob). First, let S be some choice space. S can in
general contain any sort of thing that an agent could make
choices over; we will say here that it is the space of possible
states of the environment. At trial t, we sample a random
pair of states (s1,s2) uniformly from S , and Alice makes a
prediction cpred about which state Bob will choose. Bob then
makes his choice cactual—if Alice’s prediction was correct
(cpred = cactual), she earns a reward. Alice’s goal is to maximise
her total reward earned over some large number of trials. This
task is attractive in its conceptual simplicity—but it does also
bear a relation to more realistic problems faced by people
navigating social environments, such as predicting the lane
choice of other drivers on the road, or which of two possible
gifts your partner would prefer.

Of course, how well Alice can in principle do on this task
depends on how Bob makes his choices. We will assume that
Bob is a noisily rational agent whose decisions are described
by a Boltzmann choice rule:

Pr[choose s1] =
exp

⇣
u(s1)

b

⌘

exp
⇣

u(s1)
b

⌘
+ exp

⇣
u(s2)

b

⌘ (3)

where u : S ! R is Bob’s utility function, which maps ele-
ments of S to scalar utilities, and b quantifies his ‘decision
noise’ (i.e. the extent to which he deviates from optimal choice
behaviour). Given this, and assuming access to some approxi-
mate representation û of Bob’s true utility function (defined

over the same state space), the optimal strategy is clearly to
make predictions as

cpred| û,(s1,s2) = argmax
s2(s1,s2)

û(s) (4)

Using a 0-1 loss, the objective function for a single trial is
given by

Rtrial(û) := (cpred| û = cactual)�lnbits(û) (5)

To obtain the general objective function, over both trials and
different instances of Bob (with different u), we will treat û
as a random variable resulting from the application of some
‘representation scheme’ to the true utility function u. We can
then take the expectation over both state-pairs and û to write

Rexpected(û) := E
S2
[ (cpred| û = cactual)]�lH[û] (6)

where H denotes the differential entropy.
If we only have to represent a very small number of agents,

or a small state space S , then it may be feasible to represent
utility functions exactly (i.e. use û = u), even for l > 0. But if
the agent population or state space is large, or if l � 0, then
the optimal representation in terms of Equation 6 will likely
be an approximation û that discards some information for the
sake of lower entropy. A nice consequence of the simplicity
of our prediction task is that we can write out an analytical
expression for the expected success (i.e. prediction accuracy)
given an arbitrary û:

E
S2

⇥
(cpred| û = cactual)] =

1
2
+

1
2
E
S2

h
sign(DuDû) tanh

⇣Du
2b

⌘i

(7)
where Du= u(s1)�u(s2) and Dû= û(s1)� û(s2). A derivation
for this expression is given in Appendix B, but the intuition
here is that the prediction accuracy given û, relative to the
prediction accuracy given u, depends on the probability that û
can correctly resolve the ‘polarity’ of a pair of states resolved
by u. The objective function in Equation 6 can then be written
as

Rexpected(û) =
1
2
+

1
2
E
S2

h
sign(DuDû) tanh

⇣Du
2b

⌘i
�lH[û]

(8)

Compression through state aggregation
So far, we have just considered the idea of approximate repre-
sentations in the abstract. But what might these approximate
representations actually look like? One straightforward way
to approximate a utility function is through state aggregation—
i.e. group all states within a given-sized ‘patch’ of S under a
single value (Sutton & Barto, 2018; Abel et al., 2019). It is
important here to note that we do not take this to be an opti-
mal (or even particularly strong) compression strategy for any
given state space S—but its simplicity and generality makes
it an attractive choice for illustrating the tradeoff dynamics
that we are concerned with. To do this, we set up a simulation
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Figure 1: Results of simulating pairwise choice prediction with state-aggregated utility function representations, for noisily
rational target agents with spatially correlated 2D utility functions. (A) theoretical (Equation 7) vs simulated prediction accuracy
as a function of aggregation patch size for different values of utility function lengthscale and target agent b. (B) illustration of
state aggregation levels for example 2D utility function. (C) optimal patch size as a function of increasing tradeoff parameter l.
(D) cost-adjusted return (Equation 8) as a function of patch size, with cost given by continuous entropy.

environment where agents make choices over pairs of tiles in
a 32x32 2D grid. Each agent has a spatially correlated utility
function drawn from a Gaussian Process (with RBF kernel),
and a decision noise parameter b. Over a number of trials,
we simulate a choice prediction strategy using different levels
of state aggregation (where state aggregation is measured by
‘patch size’, i.e. the number of grid tiles grouped under a single
value in the aggregated representation). For this simple setup,
the specific relationship between patch size and prediction
accuracy should be determined by both the lengthscale of the
Gaussian Process (i.e. how smoothly u varies over S ), and
the decision noise b of the agents making the choices—we
therefore repeat the simulation for different values of each
parameter (keeping the other constant).

The results of these simulations are shown in Figure 1. First,
panel (A) shows that Equation 7 successfully captures the
effect on simulated choice prediction accuracy of increasing
patch size, across all simulated values of lengthscale and b. As
we would expect, prediction accuracy decreases monotonically
with increasing patch size. Furthermore, for any given patch
size < 32, prediction accuracy decreases with increasing b (i.e.
as agents become more unpredictable). We also see that the
decrease in prediction accuracy with patch size is less steep at
higher lengthscale (i.e. smoother u), where less information is
lost for a given amount of aggregation. Panel (D) illustrates
the expected cost-adjusted return (Equation 8) as a function of
patch size, for the same set of b and lengthscale values, and
for various values of the tradeoff parameter l. We see that the
optimal aggregation level is shifted to the right as we increase
l (and thus care more about information cost). This same
trend is also seen in panel (C), which shows directly how the
optimal patch size changes as a function of l.

Figure 2: Interface for behavioural experiments

Experiment 1
In the preceding sections, we presented a theoretical and com-
putational analysis of the tradeoff between information cost
and predictive value faced by agents representing others’ util-
ity functions. We now seek to shed light on this tradeoff in
human social cognition—that is, does our optimal analysis
predict people’s actual choices about how much information
to represent about other agents’ utility functions?

Procedure
To answer this question, we developed a behavioural exper-
iment based on the simple pairwise choice prediction task
outlined above. We recruited a total of n = 90 adults through
the online platform Prolific, who were then directed to an on-
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line game consisting of 5 rounds (excluding an initial tutorial
round), and instructed to try and maximise their final score.
To incentivise performance, participants were rewarded with
bonus payments for achieving scores above a certain threshold.
The cover story for the task was that participants (playing
the role of Alice) had to predict the choices made between
different plots of land (tiles) in a field (8x8 2D grid) by a
farmer (playing the role of Bob) trying to grow a particular
crop. While making choice predictions, participants were
given access to a (possibly aggregated) representation of the
farmer’s utility function in the form of a map of the different
plots’ ‘quality’ for growing the crop in question. Crucially,
the tradeoff dynamics were introduced via a game mechanic
were participants spent points to acquire this map, and earned
points for correct predictions. At the start of each round, par-
ticipants selected a level of state aggregation, paying a cost in
points determined by the level of aggregation chosen. They
were then presented with a series of randomly sampled tile
pairs—for each pair they were instructed to select the tile that
they thought agent would choose, while being able to see the
(possibly aggregated) map they had just ‘purchased’. For sim-
plicity, the farmer was set to be perfectly rational, i.e. b ! 0
under the choice rule in Equation 3. Figure 2 shows the main
components of the game interface. We varied two factors be-
tween participants in a 2x3 design (with 15 participants per
condition): the texture of the 2D utility functions (‘rough’,
‘smooth’, corresponding to GP lengthscales of 0.5 and 2 re-
spectively), and the absolute costs of the different maps (‘low’,
‘medium’, ‘high’). All participants faced the same number and
sequencing of rounds, regardless of condition, and the relative
cost of the different maps was always the same. To maximise
their overall score, a given participant would need to choose,
at each round, the level of state aggregation that optimally
balanced cost against expected predictive value (depending on
their assigned condition). We recorded participants’ choices of
aggregation level at each round, as well as all of the pairwise
choice predictions that they made.

Results

From our behavioural data, we compute participants’ average
prediction accuracy as a function of aggregation level (patch
size), split by texture condition. We then compare these in Fig
3 (A) to Equation 7. We can see that participants’ average pre-
diction accuracy is fairly well captured by the model—that is,
participants in general made effective use of the information
contained in their chosen representations. Participants were
also more accurate in the smooth utility function condition, re-
flecting the fact that less information is lost when aggregating
spatially correlated functions with higher lengthscale. So, our
model predicts how participants’ prediction accuracy varies
with aggregation level. But can it predict which aggregation
levels participants will select? For each of the 6 conditions,
we compare the recorded proportions of participants’ patch
size selections against the choice distribution given by three

different variants of a noisily rational model

Pr{select û} µ exp

 
Vm(û)

b

!
(9)

where Vm(û) is set as either the expected accuracy, the nega-
tive cost, or the full cost-adjusted return (from Equation 8).
This comparison is shown in Figure 3 (B), using b = 0.25.
While none of these three models is able to capture partici-
pants’ patch size selections perfectly, it is clear that the full
resource-rational choice rule is a much better fit than either
the accuracy-only or cost-only models—indicating that to at
least some extent, participants are sensitive to the tradeoff
between information cost and predictive value in selecting
representations. For instance, participants’ selection proba-
bility decreased monotonically with increasing patch size in
the low-cost condition, and increased almost monotonically
in the high-cost condition. However, for the medium cost
condition, the resource-rational model predicts a greater differ-
ence in selection probabilities between the rough and smooth
conditions than was reflected in participants’ behaviour. This
suggests that participants in our experiment, while sensitive
in general to the balance of value and cost, were not fully
resource-rational with respect to the specific parameters of
their task environment.

Experiment 2
Procedure
We conduct a second behavioural experiment, as a small varia-
tion on Experiment 1. Rather than varying utility function tex-
ture, we now vary the decision noise of the target agent. Partici-
pants (total n= 30) were divided equally between a ‘low noise’
condition, where they encountered an agent with b= 0.01, and
a ‘high noise’ condition, where b = 1.0. The game structure
and mechanics were otherwise unchanged from Experiment 1.
All utility functions were taken from the ‘smooth’ condition
of Experiment 1 (lengthscale = 2.0), and absolute map costs
were kept constant between all participants.

Results
The results of Experiment 2 are shown in Figure 4. Par-
ticipants’ selection of representations is compared to the
same three models as used for Experiment 1. In this setting,
the resource-rational model captures the idea that the cost-
usefulness tradeoff is affected by target agent b. As an agent’s
decision-making gets noisier, the marginal predictive value of
information about their utility function decreases—therefore
the representation strategy of an agent seeking to optimise
this tradeoff should be shifted towards higher aggregation as
decision noise increases. Looking at Figure 4, we can see
that this trend is indeed reflected in participants’ behaviour,
at least to some degree: for instance, the lowest aggregation
level was chosen more in the ‘low noise’ condition, and the
highest aggregation level was chosen more in the ‘high noise’
condition. As in Experiment 1, the resource-rational model
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Figure 3: Results of Experiment 1. (A) participants’ average choice prediction accuracy as a function of patch size, split
by texture condition and compared to the theoretical accuracy predicted by Equation 7. (B) empirical patch size selection
probabilities for participants from each condition, compared to those given by Boltzmann-rational models (Equation 9) based on
only expected accuracy, only information cost and the full cost-adjusted return objective (Equation 8), with b = 0.25.

Figure 4: Results of Experiment 2: empirical patch size se-
lection probabilities for participants from low and high noise
conditions, compared to those given by Boltzmann-rational
models (Equation 9) based on only expected accuracy, only
information cost and full cost-adjusted return (Equation 8),
with model b = 0.45.

gives a better fit than either of the accuracy-only or cost-only
models, but again we see points of noticeable deviation (at
patch size = 16 in the ‘low noise’ condition and patch size
= 4 in the ‘high noise’ condition).

Discussion
In this paper, we have considered the relatively unexplored
problem of how much information to represent about other
agents in social cognition, through the example task of predict-
ing an agent’s choices over pairs of options. Specifically, we
examined the tradeoff that an observer agent faces between
information cost and predictive value in choosing how much
information to represent about a target agent’s utility function.
We first presented some brief theoretical and computational
analysis of how a simple state aggregation strategy can be used
to navigate this tradeoff. We then conducted two behavioural
experiments to compare people’s choices of representation to a
resource-rational state-aggregation model. Our findings were
mixed: while for both experiments the resource-rational model
fit our recorded data better than simpler decision rules based
only on expected predictive accuracy or representation cost,
participants still showed non-trivial deviations from optimality.
This may be explained by the fact that our experimental setup
is highly simplistic, and uses only a single explicit representa-
tion cost as stand-in for the real cognitive costs of information
acquisition and storage. For instance, participants’ behaviour
may look closer to optimal under an extended model that ac-
counts for additional constraints on e.g. attention and memory.
Future experimental work should attempt to probe these nu-
ances, and bridge the high-level computational view presented
in this paper with more detailed and psychologically grounded
notions of cognitive cost. An additional direction for future
work is exploring strategies for obtaining resource-rational
representations of agent utility functions that go beyond naive
state aggregation—e.g. by representing individuals primarily
in terms of their group affiliations or other social identity cues.
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Appendix
A: Representation entropy
Here we provide some additional details on our use of repre-
sentation entropy as a measure of cognitive cost. For a compre-
hensive introduction to entropy (and other related information-
theoretic quantities) we direct the reader to Cover & Thomas
(2006) or MacKay (2002). For a discrete random variable
X 2 X with probability mass function p(x) := Pr{X = x}, the
entropy of X is given by

Hb(X) =� Â
x2X

p(x) logb(p(x)) (10)

When b = 2 (as it typically is), the entropy has units of bits.
For a continuous random variable Y 2 Y with probability
density function p(y), the differential entropy of Y is given by

Hb(Y ) =�
Z

y2Y
p(y) logb(p(y)) (11)

If Y follows a multivariate Gaussian distribution with covari-
ance S, then H(Y ) is computed as

H2(Y ) =
1
2

log2 |S|+
n
2
�

log2(2pe)
�

(12)

where n is the dimensionality of Y (Rasmussen & Williams,
2006). This allows us to compute the entropy of our agent
utility functions u, since each is a continuous random vari-
able distributed according to a multivariate Gaussian with
known S. To compute the entropy of a state-aggregated utility
function estimate û, we can treat û as a new continuous RV
with a lower-dimensional multivariate Gaussian distribution
whose covariance Sagg is determined entirely by S and the
level of state aggregation. Determining Sagg is then sufficient
to compute H(û).

B: Expected prediction accuracy from approximate
utility functions
Let û be an arbitrary approximation to the utility function u.
We want to find an expression for ES2

⇥
(cpred| û = cactual)

⇤
—

that is, the expected accuracy of an observer predicting the
choices of a noisily rational agent over pairs of different states
sampled independently from S , given that the observer rep-
resents the target agent’s utility function as û. For any given
pair of states (s1,s2) we define Du = u(s1)�u(s2) and Dû =
û(s1)� û(s2). Since the optimal prediction strategy is to pre-
dict the higher-value state, the prediction made for a given state
pair, guided by representation û, depends only on sign(Dû).
For any particular pair (s1,s2), the sign product between u and
û can take one of three values: sign(DuDû) 2 {�1,0,1}. Let
pu be the probability that an observer representing the full u
would predict the choice correctly. We can then express the
equivalent probability for û pû in terms of pu as

pû = Pr
�

sign(DuDû) = 1
 

pu

+Pr
�

sign(DuDû) =�1
 
(1� pu)

+Pr
�

sign(DuDû) = 0
 1

2

Using the fact that ES2
⇥

sign(DuDû)
⇤
= Pr

�
sign(DuDû) =

1
�
�Pr

�
sign(DuDû) =�1

�
, we can then write the expected

prediction accuracy using û as

E
S2

⇥
(cpred| û = cactual)

⇤
=

E
⇥

sign(DuDû)
⇤
+1

2
pu

+
1�ES2

⇥
sign(DuDû)

⇤

2
(1� pu)

(13)

Substituting

pu = E
S2

"
1

exp
⇣
�|Du |

b

⌘
+1

#
(14)

(from the definition of the Boltzmann-rational choice rule),
and using the identity

(z+1)
1

exp(�x)+1

+(1� z)
✓

1� 1
exp(�x)+1

◆

= z tanh
✓

x
2

◆
+1 (15)

we obtain

E
S2

⇥
(cpred| û = cactual)

⇤
=

1
2
+

1
2
E
S2

h
sign(DuDû) tanh

⇣Du
2b

⌘i

(16)
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